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MATERIAL AND GEOMETRY ASPECTS O F  SPACE RADIATORS 

by Seymour Lieblein and James H. Diedrich 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

ABSTRACT 

I Space-radiator materials and fin-tube geometry have a la rge  influence / w 

i on t h e  ult imate size and weight of the rad ia tor .  Many f ac to r s ,  i n  tu rn ,  
influence t h e  requirements f o r  materials and geometry, such as meteoroid 
damage protect ion,  s t r u c t u r a l  in tegr i ty ,  vehicle integrat ion,  and f l u i d  
compatibil i ty.  
geometries that can be considered. It appears t h a t  a completely satis- 
fac tory  so lu t ion  of t he  materials-geometry question f o r  advanced Rankine 

Similarly,  there  i s  a wide va r i e ty  of mater ia ls  and 

power systems i s  not yet  i n  hand. 

INTRODUCTION 

Designers of advanced nuclear space power systems a re  very much con- 
cerned with t h e  s i z e  and w e i g h t  o f  the r ad ia to r s  required t o  dissipate 
the  waste-heat loads. 
s eve ra l  p r inc ipa l  f a c t o r s  or variables.  The s i ze  of the  r ad ia to r  i s  
determined by the  design heat load and t h e  ex terna l  r ad ia t ion  heat- t ransfer  
rate. 
temperature of the working f l u i d ,  the emittance of the r ad ia to r  surface, 
t he  spec i f i c  r ad ia to r  geometry and material ,  and the i n t e r n a l  f l u i d  f l o w .  
The temperature of the r ad ia to r  working f l u i d  i s  determined by the  cycle 
optimization and design, which has been the  subject  of many system studies .  
The surface emittance, for many rad ia tor  materials, w i l l  depend on t h e  
appl ied coating. 
ducted under contract  by the  Fratt & Whitney Company (ref.  1) have shown 
t h a t  stable coating operation up t o  10,000 hours can be achieved a t  
emittance l eve l s  up t o  0.9 ( f i g .  1). 
i n t e r n a l  flow associated with condensing potassium f o r  r ad ia to r  applica- 
t i o n s  i s  a l s o  w e l l  i n  hand (e.g., refs .  2 t o  4). Thus, t h e  remaining 
var iab le  governing the  magnitude of the  r ad ia to r  area i s  the spec i f ic  
r a d i a t o r  geometry and mater ia l .  

The r ad ia to r  s ize  and weight are each governed by 

External  r ad ia t ion  heat  t ransfer  i s  a function pr imari ly  of t he  

Recent t e s t s  of high temperature coatings i n  vacuum con- 

Similarly,  it appears t h a t  t he  

The weight of a radiator i s  determined d i r e c t l y  by the  r ad ia to r  
materials and s t ruc tu re ,  which include both the  basic  heat  t r ans fe r  
components ( f i n  and tube,  headers) and t h e  s t r u c t u r a l  support and vehicle- 
i n t e r f ace  components. 
i n t e r n a l  f l u i d  compatibi l i ty  (cycle temperatures and alkali metal  used), 
meteoroid damage protect ion,  s t ruc tu ra l  loads,and s impl ic i ty  of f ab r i ca t ion  
and construction. Unfortunately, many of these requirements are frequently 

Material se lec t ion  i s  based on considerations of 



i n  confl ic t .  
heat t ransfer ,  meteoroid protection, and s t ruc tu ra l  support. 
f igurat ions a re  possible,  and there  is  a strong in t e r r e l a t ion  between 
geometry and materials considerations. 

Radiator geonetry can a l s o  be u t i l i z e d  t o  enhance external  
Many con- 

This report  w i l l  examine some aspects of the material-geometry 
coupling with respect t o  such f ac to r s  as meteoroid protection, f in-tube 
configuration,and panel segmentation, as obtained from recent s tudies  
conducted by the NASA-Lewis Research Center. 

METEOROID PROTECTION 

Meteoroid Flux 

Considerable work has been done recent ly  a t  the  Lewis Research 
Center on defining the  meteoroid hazard as it e x i s t s  i n  space. 
r e s u l t  of analysis  of par t ic le - f lux  data obtained from the  various 
s a t e l l i t e  experiments, from photographic and radar meteor observations, 
and studies of th& zodiacal l i g h t ,  it appears that a good pa r t  of t he  
observed data var ia t ions  and discrepancies can be explained on the  basis 
of t he  existence of two d i s t i n c t  types of dust par t ic les .  
pa r t i c l e s  i s  known t o  be i n  o rb i t  around the  sun (he l iocent r ic  o r b i t ) .  
These pa r t i c l e s  cons t i tu te  t he  cometary meteori t ic  pa r t i c l e s  t h a t  a r e  
detected by radar  and photographic observations (ref.  5 )  and the  zodiacal 
space dust. 
the  ea r th  (geocentric o r b i t ) .  
o rb i t ing  meteoroids a re  the  pa r t i c l e s  t h a t  most of t he  s a t e l l i t e  experi- 
ments a re  detecting. 
reference 6. On the  bas i s  of a more recent  analysis  by I. J. Loeff ler  , 
ana ly t i ca l  d i s t r ibu t ions  f o r  t he  meteoroid f l u x  versus p a r t i c l e  mass 
have been established as shown i n  f igure  2. 
curve for the hel iocentr ic  flux and for t h e  geocentric f l u x  a t  three 
a l t i t u d e s  above the  surface of t he  ear th .  
f l u x  w i l l  decrease with increasing a l t i t udes .  

A s  a 

One c l a s s  of 

The second type of pa r t i c l e  i s  believed t o  be i n  o r b i t  around 
It i s  fu r the r  believed t h a t  t he  ear th-  

A n  e a r l y  discussion of t h i s  concept i s  given i n  1 

The figure shows the  deduced 

I n  general, t h e  geocentric 

For the geocentric f lux ,  the  hypothesis considers t h a t  these pa r t i c l e s  
Depending on the  r e l a t i v e  a r e  most l i ke ly  i n  d i r ec t  o rb i t  around t h e  ear th .  

o rb i t s  of pa r t i c l e  and spacecraft ,  the  r e l a t i v e  impact ve loc i ty  would be 
i n  the  order of 0 t o  11 km/sec with probable values approximated by the  
c i r cu la r  o r b i t a l  ve loc i ty  (e.g. 7.35 km/sec 
believed tha t  the typ ica l  densi ty  of these p a r t i c l e s  i s  of the  order of 
1 @/a3. 
Astronomical Observatory has indicated t h a t  t h e  average densi ty  of such 
pa r t i c l e s  i s  on the  order of 0.2 gm/cm3 i n  t h e  photographic range (ref. 
and 0.5 gm/cm3 i n  the  radar range. 

a t  1000 km a l t i t u d e ) .  It i s  a l s o  

For the  heliocentric-cometary meteoroids t h e  work of t he  Harvard 

7), 
Estimates of a representat ive ve loc i ty  

'Individuals named i n  the  t e x t ,  unless  otherwise indicated,  a r e  
members of t h e  Flow Analysis Branch of t h e  Lewis  Research Center. 
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f o r  t he  he l iocent r ic  meteoroids have a l so  been recent ly  made. 
t i o n  concerning the  charac te r i s t ics  of the  cometary meteoroids have been 
obtained ch ie f ly  from photographic observations. However, there  is  a lower 
threshold of both p a r t i c l e  mass and veloci ty  t h a t  can be photographed. 
sequently, there  are more meteoroid pa r t i c l e s  of lower ve loc i t i e s  than have 
been observed. 
p l a t e s  conducted by C. D. Miller,  a revised ve loc i ty  d i s t r ibu t ion  has been 
determined f o r  sporodic cometary meteors based on a correct ion of the  minimum 
photographability of meteor trails. 
was obtained and integrated with respect t o  an impact-damage r e l a t i o n  based 
on the  2/3 power of impact ve loc i ty  t o  y ie ld  an e f fec t ive  ve loc i ty  f o r  t he  
he l iocent r ic  d i s t r ibu t ion  from 1 7  t o  2 0  km/sec. 

Detailed informa- 

Con- 

I n  a de ta i led  analysis  of a large number of meteor photographic 

A log-normal ac tua l  ve loc i ty  d i s t r ibu t ion  

A s  a r e s u l t  of these analyses, average meteoroid impact ve loc i t i e s  f o r  
both t h e  geocentric and he l iocent r ic  d i s t r ibu t ions  have been reduced con- 
s iderably  compared with the  previous values of around 30 km/sec. 
that not only has the  magnitude of the hazard i tself  been reduced, but also 
t h a t  t he  app l i cab i l i t y  of laboratory impact data i s  more s igni f icant .  
l ight-gas  gun i s  cur ren t ly  f i r i n g  rout inely a t  7.6 km/sec, and it appears 
t h a t  ve loc i t i e s  up t o  10 km/sec may be obtained with t h i s  device. 
the  degree of extrapolat ion required can be considerably reduced, and more 
confidence can be placed on the  s u i t a b i l i t y  of impact resul ts  obtained i n  
laboratory hypervelocity f a c i l i t i e s .  

This means 

The 

Thus, 

Recent r e s u l t s  obtained from t h e  Pegasus I1 and I11 meteoroid detect ion 
s a t e l l i t e s  a r e  a l so  shown i n  figure 2. 
calculated points  f o r  the  8- and 16-mil (0.2- and 0.4-mm) thickness sensors. 
These points  were calculated according t o  the  conditions f o r  t h e  geocentric 
flux hypothesis (p = 1 gm/cm3 and V = 7.35 km/sec). 
the  16-mil data  point based on hel iocentr ic  f l u x  i s  shown by the so l id  
symbol (based on p = 0.5 @/em3 and V = 20 km/sec). 
agreement is  obtained between these preliminary data and the ana ly t i ca l  
model f o r  the flux. It should be pointed out here t h a t  the  region of 
i n t e r e s t  f o r  advanced system rad ia tor  designs in f igure  3 extends from 
p a r t i c l e  mass l e v e l  of about 5 ~ 1 0 ' ~  gm and up. 
roughly a t  t h e  lower l i m i t  by the  Pegasus data and i n  the  upper range by 
the  photographic meteor data. 
f igure  2 i s  a f a i r l y  representat ive description of t h e  meteoroid f l u x  i n  
t h i s  region of i n t e re s t .  

The two open symbols represent t h e  

The ca lcu la t ion  of 

It i s  seen t h a t  good 

This range i s  represented 

It i s  f e l t ,  therefore ,  t h a t  t he  model of 

Another aspect of t h i s  recent work, namely, t he  very low densi ty  of 
the he l iocent r ic  pa r t i c l e s ,  has indicated t h a t  we cannot consider meteoroids 
as s o l i d  homogeneous par t ic les .  
because of t h e i r  const i tuents  and low bulk density,  must be of a "fluff- 
b a l l "  nature with some d i s t r ibu t ion  of mass. I n  order t o  determine whether 
t he re  is  a difference i n  the  impact charac te r i s t ics  of "f luffy" p a r t i c l e s  
and s o l i d  p a r t i c l e s  of the same mass, D r .  T. D. Riney of the General 
E l e c t r i c  Company has been contracted by the  Lewis Research Center t o  con- 
duct t h e o r e t i c a l  s tudies  of the impact cha rac t e r i s t i c s  of p a r t i c l e s  of 
heterogeneous mass d is t r ibu t ions  and low bulk dens i t ies .  

It i s  apparent t h a t  these pa r t i c l e s ,  

3 



Hypervelocity Impact Results 

Considerable contract  work has been done i n  the  past  year by the 
General Motors Corporation i n  Santa Barbara on hypervelocity impact i n to  
various simulated rad ia tor  t a r g e t s  and materials using a l ight-gas  gun 
( r e f .  8) .  
can be achieved with the  l ight-gas  gun f o r  rout ine f i r i n g  of spherical  
p ro j ec t i l e s  i n  the diameter range of 1/16 t o  1/8 in .  (1.6 t o  3.2 mm). 
The r e l a t ion  between p ro jec t i l e  s i ze  f o r  several  common p ro jec t i l e s  and 

A s  indicated previously, p ro j ec t i l e  ve loc i t i e s  of 7.6 km/sec 

L T  
V 

rad ia tor  design meteoroid hazard parameter . (ref. 9 )  i s  shown 
-In P(O)  

i n  f igure  3(a) for an energy l e v e l  equal t o  the  comparble representat ive 
meteoroid pa r t i c l e  i n  space. The corresponding var ia t ion  of meteoroid 
pa r t i c l e  minimum mass a t  20 km/sec against  which the r ad ia to r  must be 
protected i s  shown i n  f igure  3(b) .  Typical rad ia tor  designs f o r  power 
systems i n  the 300- t o  1,000-kilowatt c l a s s  with l i fe t imes  T of 
365 t o  500 days, no-damage probabi l i t i es  P(o i  of 0.90 t o  0.98, have 
values of the hazard rameter from around 10 
(0.9~10~ t o  4.7X1O6 mrdays) .  For t h i s  range of t h e  hazard parameter, 
it i s  seen from f igure  3 t h a t  the  l ight-gas  gun produces p ro jec t i l e  
energies comparable t o  those of t he  applicable meteoroid p a r t i c l e s  i n  
space. 

t o  5x107 ft2-days 

Damage modes.- I n i t i a l  results of t he  hypervelocity impact tes ts  a re  
given i n  references 10, 11, and 12. 
tubes can sustain several  modes of c r i t i c a l  damage ( f ig .  4). I n  addi t ion 
t o  crater ing of a surface and ac tua l  perforat ion of a tube w a l l ,  dimpling 
and spal l ing of  the  inner surface of the  tube can be obtained a t  thick-  
nesses larger  than t h a t  required t o  prevent perforation. Dimpling of t he  
inner surface may be undesirable since it causes a r e s t r i c t i o n  of t he  
flow passage. For spa l l ,  the  re lease  of metal fragments o r  p a r t i c l e s  
i n t o  the  radiator  c i rcu la t ing  f l u i d  i n  a zero-gravity environment i s  not 
considered desirable when ro t a t ing  components a re  present i n  the  flow 
c i r cu i t .  
f lu id .  

These r e s u l t s  indicated t h a t  rad ia tor  

Perforation, of course, w i l l  r e s u l t  i n  a l o s s  of t he  working 

The c ra t e r ,  perforation, dimple, and s p a l l  cha rac t e r i s t i c s  of a 

Some of the r e s u l t s ,  as calculated by N. Clough,are l i s t e d  
wide range of mater ia ls  have been determined i n  the  General Motors 
program. 
i n  t ab le  I. 

4 



TABLE I. - RESULTS O F  HYPERVELOCITY IMPACT TESTS 

7 aCratering 
coef f ic ien ts ,  

Y 

1.97 
1.67 
1.39 
2.05 
1.18 
1.55 
1.77 
1.99 
1.38 
1.57 

Material DRear-surface damage f ac to r s  

Dimple Spall Perforation 
t /pw t /pw t/Pw 
2.5 2.3 1.7 
2.4 1 .9  1.4 
4.5 4.0 1 .7  --- --- --- --- --- --- 
3.0 2.5 --- 
2.5 2.1 1 . 7  
2.4 1.9 1.4 --- --- --- 
--- --- --- 

2024-T6 aluminum 
316-Stainless steel 
Columbium-1 percent 2s 
Beryllium 
Graphite (ATJ) 
Inconel- 718 
L-605 
A-286 
Vanadium 
Molybdenum 

I 

&Room temperature values. 
bThreshold o r  inc ip ien t  values. 

Additional data i n  reyerence 12. 

The c ra te r ing  coef f ic ien t  y 
t i o n  factor used i n  t h e  r e l a t i o n  f o r  estimating the  c r a t e r  depth i n  a 
th i ck  t a r g e t  

i n  tab le  I r e f e r s  t o  t h e  empirical  correla-  

P,, as indicated by t h e  following equation. 

where d is  the  p a r t i c l e  diameter, p i s  the  pa r t i c l e  density,  V i s  
the  impact veloci ty ,  pt i s  the tar@$ density,  E t  i s  t h e  t a r g e t  modulus 
of e l a s t i c i t y ,  and g i s  the  wav i t a t iona l  constant. Normally, if the  
cor rec t  property parameters are used, t h e  value of y 
much among d i f fe ren t  materials. I n  the past a uniform value of 2.0 has 
been used i n  radiator-armor calculations (e.g., r e f s .  9 and 13). 
seen i n  t a b l e  I, the  c ra te r ing  coefficient varied considerably f o r  t h e  
materials tes ted.  
the  impact phenomena and do not know the proper material property o r  
s t rength  parameters and cor re la t ing  functions that w i l l  unify the  data. 
Table I fu r the r  indicates  that specif ic  impact tes ts  should be conducted 
f o r  any p m t i c u l a r  mater ia l  that i s  f i n a l l y  used i n  an actual rad ia tor  
design. 

should not vary 

AS can be 

This means t h a t  we really do not completely understand 

It i s  a l s o  in t e re s t ing  t o  note t h a t  graphite shows a very low cra te r -  
ing  coef f ic ien t ,  indicat ing t h a t  very shallow c ra t e r s  are produced i n  t h i s  
material. 
and t h a t  fu r the r  invest igat ions of the impact cha rac t e r i s t i c s  of conventional 
graphi te  and pyrolyt ic  graphite are i n  order. 

This may suggest t h a t  graphite would be a good armor material, 

5 



I n  a similar fashion, wide var ia t ions  were obtained i n  the dimple, 
spa l l ,  and perforation damage factors .  
are l i s t ed  i n  table 1 as the r a t i o  of the thickness corresponding t o  the 
onset of the pa r t i cu la r  damage mode t o  the c ra t e r  depth i n  a s e m i -  
i n f i n i t e  thick t a rge t  P, as given by equation (1). I n  par t icu lar ,  it 
i s  noted tha t  columbium - 1-percent zirconium requires  a very la rge  thick-  
ness t o  prevent spa l l .  Such a large thickness f ac to r  would render t h i s  
mater ia l  t o o  heavy i n  ant ic ipated rad ia tor  use. 
necessar i lybe  the case i f  t h e  design does not require  the  complete 
elimination of spall ing.  
use of  an electromagnetic or other type of nonrotating pump i n  a circu- 
l a t i n g  loop of an a l l - l i q u i d  segmented r ad ia to r  would m a k e  t he  design 
t o  defeat spal l ing unnecessary. Since there  are no moving pa r t s  i n  the 
electromagnetic pump c i r c u i t ,  the p o s s i b i l i t y  of catastrophic  damage 
from the release of spal led pa r t i c l e s  would not be present i n  t h i s  type 
of system. 
tube walls i n  t h i s  case might e a s i l y  compensate f o r  the  added weight and 
reduced eff ic iency of t he  pump. 

These fac tors  defined i n  figure 4 

However, t h i s  would not 

I n  t h i s  respect ,  it should be noted that the 

The indicated reduction i n  weight because of thinner  allowable 

The wide va r i a t ion  of c r i t i c a l  damage f ac to r s  obtained f o r  the 
damage modes and materials covered i n  table I has been r e f l ec t ed  i n  an 
equally wide var ia t ion  of rad ia tor  specif ic  weights. 
calculat ions f o r  a cen t r a l  f in-tube r a d i a t o r  based on these new damage 
f ac to r s  are given i n  reference 12.  I n  those p lo t s ,  it was shown tha t  a 
subs tan t ia l  weight reduction can be obtained w i t h  single-material  tubes 
(no inner l i n e r ) ,  i f  the  avoidance of  perforat ion rather than  s p a l l  can 
be adopted as t h e  design c r i te r ion .  However, t he  bimetal l ic  configura- 
t i ons  w i t h  inner l i n e r s  and beryllium or graphite armor continued t o  
evince the l eas t  weights. 
s t e e l  and columbium-alloy tubes designed f o r  the  avoidance of perforat ion 
i s  given i n  f igure  5. Specific weights were computed according t o  the 
method of reference 1 4  using the  meteoroid flux, ve loc i ty ,  and densi ty  
values proposed i n  reference 5 for 300 ki lowatts  power output, 10,000 hours, 
and P(o) = 0.96. 

Cmparative weight 

A comparison of such l ined  tubes w i t h  s t a in l e s s -  

The graphite armored tubes i n  figure 5 were computed f o r  th ree  values 
of bulk density: 
fu l l -dens i ty  pyrolyt ic  graphite; and the  other  f o r  a low-density expanded 
pyrolyt ic  graphite composite construction (e.g., ref. 15). The value Y 
used f o r  the  ca lcu la t ion  of armor thickness f o r  the expanded pyrolyt ic  
graphite was determined from the  experimental penetrat ion depth data of 
reference 15 and an assumed value of fu l l -dens i ty  modulus of e l a s t i c i t y  
(eq. (1)). 
dimple factor  (ad) i n  the  equation f o r  armor thickness  f o r  the expanded 
graphite w a s  taken as 1,75. This value of damage f ac to r  with l ined  
beryllium tubes corresponds t o  a r a t i o  of l i n e r  dimple height t o  inner 
diameter of around 0.25. The s ingle  curve shown i n  f igu re  5 f o r  the 
expanded pyrolytic-graphite armor represents  the  mean of a band of values 

one corresponding t o  a normal ATJ graphite; one f o r  a 

In the  absence of spec i f i c  experimental data, the tube-l iner  
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(+ 0.25 lb/kw or + 0.11 kg/kw) obtained from var ia t ions  i n  t h e  estimated 
v h e s  of l i n e r  d&age f ac to r  (1.6 t o  1.75) and thermal conductivity 
(30- t o  80-percent fu l l -dens i ty  value).  

Effect  of l i qu id  f i l l . -  All impact work t o  date has been done with 
p l a t e s  and empty tubes. 
the  e f f e c t  of the  presence of a fluid ins ide  the  tube and, i n  par t icu lar ,  
the  e f f e c t  of a l i qu id  such as the  l iqu id  metals? 
answer t h i s  question, impacts were conducted i n t o  tubes f i l l e d  with water, 
and i n  general  it was found t h a t  there is  very l i t t l e  e f f e c t  because of 
t he  presence of t he  i n t e r n a l  l iquid.  
figure 6. The figure shows the  r e s u l t  of i d e n t i c a l  impacts i n t o  an empty 
and water - f i l l ed  tube composed of a s t a in l e s s - s t ee l  l i n e r  and surrounding 
cast-aluminum armor. 
tube i s  noticeably suppressed when water i s  present i n  t h e  tube. 
same r e s u l t  was observed f o r  tubes of smaller diameters. Comparable 
t e s t s  were conducted on s t a in l e s s - s t ee l  tubes t o  determine the  e f f e c t  of 
l i q u i d  f i l l  on spal l ing,  and here too, s imi la r  r e s u l t s  were observed. 
It appears therefore  t h a t  r e s u l t s  of t e s t s  with empty tubes, since they 
tend t o  be conservative, can be used for radiator-design appl icat ions.  
B s t s  a r e  now being s e t  up a t  General Motors t o  determine the comparative 
impact i n t o  a tube f i l l e d  w i t h  NaK and heated t o  13W0 F. 

The question therefore  arises: what will be 

I n  an  attempt t o  

Typical r e s u l t s  a r e  shown i n  

The f a i r l y  sizable dimple obtained i n  the empty 
The 

Beryllfum Impact.- The e f f e c t  of hypervelocity impact on beryllium- 
armored tubes has a l s o  been investigated. 
reported i n  reference 16. 
w i l l  crack on impact by hypervelocity pa r t i c l e s .  
cracking phenomenon a re  shown i n  f igure 7. 
represents  t he  bes t  r e s u l t  obtained from severa l  mater ia ls  and f ab r i ca t ion  
processes that  a re  cur ren t ly  avai lable  for fabr ica t ing  a beryllium-armored 
tube. A l a rge  spal led area i s  observed around the point of impact, and 
cracks were seen t o  eminate r a d i a l l y  from the  c r a t e r  area.  
cases, c i rcumferent ia l  and longi tudinal  cracks were a l s o  observed. 
Attempts were made t o  reduce the  cracking by placing i n t e r n a l  re inforce-  
ments within the  beryllium. The f i r s t  re inforced tube contained fine- 
kinked s t a i n l e s s - s t e e l  f i b e r s  randomly dispersed i n  the  beryllium. 
the second reinforced tube, two cylinders of s t a i n l e s s - s t e e l  wire mesh 
were inse r t ed  concentr ical ly  within the beryllium at  two r a d i a l  posit ions.  
h p a c t  i n t o  both of these reinforced t a r g e t s  showed only l i t t l e  reduction 
i n  the  observed cracking phenomenon as indicated i n  f igure  7 by the  two 
c e n t r a l  tubes. 

Preliminary r e s u l t s  a r e  
I n  general, it has been found that beryllium 

The t a r g e t  on the l e f t  
Same r e s u l t s  of t h i s  

I n  some 

For 

Another aspect of t he  beryllium cracking was the  thought that i n  
the  event of multiple impacts (i.e., if a second impact occurred adjacent 
t o  an e a r l i e r  impact) la rge  sect ions of t he  cracked beryllium armor might 
be removed. 
beryll ium tube with equal-energy impacts approximately 180' apar t .  
shown by the t a r g e t  on the  r i g h t  of figure 7, no separation or removal of 
armor was  observed. 
appear . 

A double impact was therefore  obtained by f i r i n g  i n t o  a 
A s  

However, a crack joining the two c r a t e r  areas  did 
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Sections of these t a r g e t s  have a l s o  been taken t o  obtain a better 
picture  of the damage within the beryllium armor as shown i n  f igure  8. 
The nonreinforced tube showed considerable cracking within the beryllium 
m o r  i n  the a rea  near t he  c ra t e r  and a l s o  i n  the region opposite the 
loca t ion  of impact. 
a l s o  observed i n  t h i s  par t icu lar  case. The cross-section macrophoto- 
graphs of the  wire-mesh reinforced tubes are a l s o  shown i n  figure 8. 
Here, too,  the  in t e rna l  cracking was  c l ea r ly  evident, and the reinforce- 
ments reduced the cracking only s l igh t ly .  

A delamination of the beryllium-to-liner bond w a s  

The beryllium cracking i n  i tself  may not be c r i t i c a l  i n  a rad ia tor  

Furthermore, any e f f e c t s  of delamination or cracking 
design because the tube m o r  i s  not generally designed t o  transmit 
s t r u c t u r a l  loads. 
on the  heat t r ans fe r  through the  tube would be l imited t o  the  l o c a l  area 
around t h e  tube and, i n  general, would not cons t i tu te  a la rge  percentage 
of t he  t o t a l  r a d i a t o r  area. However, the  long-term aging, cycling, or 
v ibra t ion  e f f ec t s  on a cracked beryllium sec t ion  are not known a t  t h i s  
time. 

Impacts i n t o  several  conventional grades of graphite have a l s o  
been conducted and a s imilar ,  though perhaps less severe, cracking 
tendency has been observed (ref. 16 ) .  
expanded pyrolytic graphite s t ruc tures  of l e s s  than fu l l  theo re t i ca l  
densi ty  may have acceptable impact cha rac t e r i s t i c s  (ref. 15). Further 
consideration of graphite may therefore  be warranted, although ser ious 
inherent problems w i t h  respect  t o  b r i t t l e n e s s ,  low strength,  and 
bimetal l ic  bonding are recognizable (somewhat s imilar  t o  the s i t u a t i o n  
w i t h  beryllium). 

There i s  evidence, however, that 

FIN-TUBE GEOMETRY 

Configurations 

There are  a wide va r i e ty  of fin-tube shapes and geometries that 
can be used i n  a radiator  design. 
either an  outer-armor sec t ion  bonded on an i n t e r n a l  l i n e r  of d i ss imi la r  
mater ia ls ,  o r  they  can be composed of monometallic unlined tubes. Some 
of the  configurations t ha t  have been under ana lys i s  are shown i n  
f igures  9 and 10. 
f i n  geometries. 
f i n  by conduction and i s  then  u l t imate ly  t r ans fe r r ed  i n t o  space by 
radiat ion.  
f i n  tube geometry armor sleeve bonded t o  an i n t e r n a l  high-strength 
l i ne r .  
geometry can be used i n  one of two forms: i n  one, the armor block 
completely surrounds the  tube; i n  the other,  as indicated by the  dashed 
l ines ,  the armor block is  bonded only t o  the upper por t ion  of the tube 
l iner .  

These configurations can involve 

The geometries of f igure  9 represent  solid-conducting 
I n  these configurations,  heat i s  t ransfer red  along t h e  

The upper l e f t  sec t ion  represents  the conventional Central  

For cyl indr ica l - rad ia tor  configurations,  the block open f i n  

A block double f i n  geometry can a l s o  be used, as indicated i n  
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the lower configuration on the  l e f t ,  i n  which an armor block is  between a 
sandwich of f i n s  and an i n t e r n a l  l i n e r  i s  bonded t o  the armor block. 

The bumper pr inc ip le  can a l so  be used, as indicated by the configura- 
t i o n s  on the r i g h t  i n  figure 9. I n  these geometries, the  tube i s  connected 
t o  the f i n  by means o f a t h i n s t r u t .  
by the  ac t ion  of t h e  f i n  as a bumper i n  breaking up t h e  impacting p a r t i c l e  
and spreading t h e  energy of impact over a greater  area of t h e  tube. 
double bumper f i n  configuration can a l so  be obtained by the use of an 
iden t i ca l  f i n  on the  lower surface as shown i n  the  lower r i g h t  of figure 9. 
It should be noted tha t  the  tubes i n  the bumper-fin geometries a re  mono- 
metall ic (without i n t e r n a l  l i n e r s ) .  

Protection i n  t h i s  form i s  achieved 

A 

I n  some cases, it may be desirable t o  use f i n s  with thermal con- 
duc t iv i t i e s  higher than  those avai lable  from conventional high-strength 
metals. Such a high conductivity f i n  can be obtained f o r  the temperature 
l eve l s  of t he  advanced systems by a clad f i n  i n  which two t h i n  wafers of 
s t a i n l e s s  s teel  or possibly a high-strength t i tanium a l l o y  cover an inner 
core of copper. Stainless  steel-copper clad sheet has been widely used i n  
heat  exchanger and other i n d u s t r i a l  applications. 
the  clad mater ia l  should generally be the same as the tube material. 

For ease of  fabr icat ion,  

The two configurations i n  f igure  10 present geometries u t i l i z i n g  the 
vapor chamber f i n  pr inciple .  These configurations are e s s e n t i a l l y  double 
f i n  geometries i n  which an i n t e r n a l  cap i l la ry  medium such as a wick or a 
f ibrous material l i n e s  the inner walls of the chamber formed by the  f i n s  
connecting two adjacent tubes. The capi l la ry  material i s  charged w i t h  
a t ranspor t  f l u i d  which is boiled off the tube surface and condenses on the 
f i n  surface,thus generating a f i n  of e s sen t i a l ly  constant temperature. 
The boi l ing  surface i s  continuously supplied with working f l u i d  through 
the  cap i l l a ry  medium. 
i n  a very high r ad ia t ing  effectiveness and a reduced area f o r  t h e  e n t i r e  
rad ia tor .  The vapor-chamber-fin concept can be used i n  e i t h e r  t he  block 
or bumper forms as shown i n  f igure 10 or i n  other possible configurations 
and geometries. I n  an a c t u a l  radiator  construction, it w i l l  be necessary 
t o  segment t h e  vapor-chamber f i n s  longitudinally,  s o  that a meteoroid 
puncture would not re lease  the  transport  f l u i d  from the e n t i r e  tube 
length. 
va r i a t ions  i n  temperature, it may be desirable t o  use individual  f i n  
chambers t h a t  a r e  r e l a t i v e l y  short  i n  length and separated longitudinally.  
Such a construction may be necessary t o  reduce the  e f f e c t s  of a x i a l  
temperature gradients i n  the tube on the fin-chamber i n t e r n a l  flow, and 
it may a l s o  be he lpfu l  s t ruc tura l ly .  

The constant temperature aspect of t he  f i n  r e s u l t s  

For single-phase-flow (noncondensing) r ad ia to r s  involving a x i a l  

There i s  another c l a s s  of radiator tube geometries f o r  cy l indr ica l -  
vehicle  configurations involving involute r e f l ec to r s  instead of or i n  
conjunction w i t h  conducting f i n s  (refs. 4 and 1 7 ) .  However, these 
geometries axe not considered i n  t h i s  survey. I n  any event, it i s  
important t o  point out here that the par t icu lar  tube geometry selected 
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f o r  a radiator  design w i l l  exer t  a large influence on the r ad ia to r  
vulnerable area (and therefore  armor requirement) and t o t a l  a rea  and, 
consequently, t o t a l  weight. 

Comparisons 

I n  general, calculat ions have shown t h a t  bumper- o r  block-vapor-fin 
rad ia tors  w i l l  give reductions i n  rad ia tor  planform area  of around 
20 percent and reductions i n  weight ranging from 30 t o  50 percent 
compared with the  s o l i d  conducting f i n  configurations shown i n  f igure  9. 
An i l l u s t r a t i o n  of t he  effect iveness  of the  bumper-vapor f i n  i n  achiev- 
ing low specif ic  weight i s  shown i n  f igure 11. This f igure  compares 
calculated rad ia tor  spec i f ic  weights as a function of t he  r a t i o  of the  
tube w a l l  thickness Fjt with the  required armor thickness 6, f o r  both 
the  block- and bumper-vapor f i n  geometries conskructed of stainless steel. 
Recent preliminary t e s t s  a t  General Motors, shown by the  sketch and 
v e r t i c a l  l i n e  i n  f igure  11, have indicated that, as a r e s u l t  of the  
bumper action, f a i r l y  s m a l l  w a l l  thicknesses can be achieved without tube 
inner-surface spall ing.  The f i n  thickness f o r  t he  calculat ions of 
f igure 11 was determined on the  bas i s  of a 0.90 probabi l i ty  t h a t  75 percent 
of t he  f i n  chamber segments would remain unpunctured. 

The calculations a l s o  show t h a t  t h e  use of t h e  vapor-chamber-fin 
concept can permit the design of r ad ia to r s  with fewer, l a rge r  diameter 
tubes with considerably wider spacings between tubes compared with 
conducting-fin rad ia tors  without large pena l t ies  i n  weight. Such 
rad ia tor  configurations may be desirable  f o r  considerations of fabr ica t ion ,  
assembly, s t ruc tu ra l  support, and vehicle integrat ion.  

With respect t o  vapor-fin-chamber operation, it should be noted t h a t  
it i s  desirable t o  have f i n s  of high thermal conductivity s o  t h a t  i n  t h e  
event a f i n  chamber i s  punctured t h e  f i n s  can a c t  i n  the  normal conducting 
manner and s t i l l  maintain a fair  l e v e l  of r ad ia t ing  effect iveness .  I n  
t h i s  way a large number of punctured segments can be to l e ra t ed  i n  t h e  
design ( t o  reduce f i n  thickness)  without incurr ing a la rge  degradation 
i n  rad ia t ing  effectiveness.  
be obtained with a clad copper f i n  as described earlier. However, t h e  
advantages o f  high conductivity f i n  mater ia ls  w i l l  be e s s e n t i a l l y  
negated f o r  configurations with longi tudinal ly  separated f i n  chambers, 
as may be indicated f o r  single-phase-flow (noncondensing) radiators .  

Such a high conductivity f i n  can general ly  

A large number of  f in-tube geometries and mater ia l s  have been 
analyzed with respect  t o  t o t a l  r ad ia to r  weight and area by R. P. mebs ,  
H. C. Haller, 3. T. Lindow, and A. V. Saule, i n  references 14,  18, 19, 
and 20. Some of t h e  problems involved i n  developing the materials and 
configurations indicated i n  each case have a l s o  been assessed. The 
r e s u l t s  of these comparisons a re  summarized i n  t a b l e  11. Presented i n  
the t ab le  are several  general c lasses  of r a d i a t o r  configurations,  the  
estimated range of spec i f ic  weights obtainable f o r  a 500-kilowatt output 
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Spec i f  i c  Problem 
weight, lb/kW( e )  

1.0 t o  1.2 1. Cracking 4. Capillary flow 
2. Coatings 5. Capillary 
3. Bond corrosion 

6. Chamber f ab r i -  

Rankine cycle, and the  ant ic ipated problem areas associated with the  
development of the particular fin-tube geometry. 
presented were calculated f o r  a direct-condensing rad ia tor  including 
headers but with no allowance f o r  support s t ructure .  A comparable rela- 
t i v e  p ic ture  would be obtained f o r  a l l - l i qu id  f l o w  radiators .  
v i v a l  probabi l i ty  of 0.92 corresponds t o  an  ove ra l l  value of 0.98 f o r  an 
e igh t  -segmented radiator .  

The spec i f ic  weights 

The sur- 

2.0 t o  3.0 

1.9 t o  2.6 

2.7 t o  3.6 

TABU 11. - COMPARISON OF RADIATOR SYSTEMS 
500 kW(e), 10,000 HOURS, P(0) = 0.92, 1700° R 

3. Bimetall ic bonding 
1. Bimetallic bonding 
2. Low strength 

1. Capil lary i n t e r n a l  f l o w  
2. Fin-chamber fabr ica t ion  
3. Clad conductivity and bond 

Clad conductivity and bond 

Class I 

eryll ium armor and f i n s  
( s o l i d  conducting, with 

( s o l i d  conducting, with 
tube l iner )  

s t e e l  c lad bumper-vapor 
f i n  

s tee l  c lad bumper- 

Titanium or s t a in l e s s -  

Titanium or s t a in l e s s -  

s t a i n l e  s s - s t e e 1  bumper - 
conducting f i n  

li cat ion 
1.7 t o  2.1 111. Impact cracking 

I n  general, as would be expected, the l i g h t e r  the weight the  greater  
t h e  number of problems involved. 
discussions,  it i s  evident t h a t  considerable e f f o r t  would be required t o  
s a t i s f a c t o r i l y  develop beryllium for use i n  space radiators .  The reduction 
of impact cracking and b r i t t l eness ,  the development of liner-armor bonding 
techniques and s t ab le  high emittance coatings, and high cost  are recognized 
as t h e  p r inc ipa l  development problems with beryllium. Similar d i f f i c u l t i e s  
a r e  apparent with the  graphiies. The need fo r  surface coatings may be 
eliminated i n  t h i s  case becQ-tAuse of the natura l ly  high emittance of graphite,  
but t h i s  i s  probably counterbalanced ';- t h e  r e l a t i v e l y  low s t rength of the 
mater ia l .  

On the bas i s  of t ab l e  I1 and e a r l i e r  
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For the  clad f i n  geometries i n  t ab le  11, the  low values of the  weight 
There is  su f f i c i en t  incentive then range correspond t o  the ti tanium clad. 

t o  investigate corrosion-resistant t i tanium a l loys  with acceptable s t rength 
l eve l s  and meteoroid-impact res is tance a t  rad ia tor  temperatures. 

I n  general, t h e  use of conventional materials with clad f i n s  and no 
inner l i n e r  can produce reasonable weights and e a s i l y  fabr icated s t ruc tures  
with few ant ic ipated problems. However, t he  endurance and s t a b i l i t y  of the  
cladding with respect t o  bond and thermal conductivity w i l l  have t o  be 
ver i f ied.  For the  vapor-chamber concept, t rouble  may be experienced i n  the  
fabricat ion,  seal ing,  and buckling resis tance of t he  f i n  chambers. Further- 
more, the  vapor and l i qu id  flow within the  f i n  chamber i s  a r e l a t i v e l y  
l i t t l e  known fac to r  which w i l l  require  considerable study. 

RADIATOR SEGMENTING 

I n  any event, f o r  a l l  f i n  tube configurations, it i s  desirable t o  use 
segmented r a d i a t o r s  i n  order t o  achieve redundancy i n  the  case of high 
power systems and manned missions. 
rad ia tor  redundancy is  t o  use l i qu id  r ad ia to r s  i n  p a r a l l e l  with a convec- 
t i v e l y  cooled condenser. 
independent o f  t he  others,  and a meteoroid puncture w i l l  r e s u l t  i n  t he  
l o s s  of o n l y t h e  cooling capacity of tha t  pa r t i cu la r  r ad ia to r  c i r cu i t .  
Another concept that can be used t o  obtain r ad ia to r  redundancy i s  t h e  
shared-fin principle.  I n  t h i s  concept, instead of individual ly  separated 
rad ia tors  the tubes o f  a given rad ia tor  a r e  connected a l t e r n a t e l y  t o  
d i f fe ren t  headers. Thus, there  are several  independent tube c i r c u i t s  
within a radiator  panel. The advantage of t h i s  type of configuration i s  
t h a t ,  if a tube is  punctured and coolant is  l o s t  from i t s  c i r c u i t ,  the 
tube and i t s  f i n  can s t i l l  receive heat from the  adjacent tubes and f i n s  
on e i t h e r  side. Thus, the rad ia t ion  from the  surfaces of the  punctured 
f i n  and tube i s  not reduced t o  zero, and a smaller reduction i n  rad ia t ing  
effectiveness w i l l  r e s u l t  f o r  the  e n t i r e  r ad ia to r  system. 

The most d i r e c t  way of achieving 

I n  t h i s  manner, each r ad ia to r  loop i s  completely 

These redundancy concepts are i l l u s t r a t e d  i n  f igure  12. On t h e  
lower r i g h t  p a r t  of the f igure  i s  t h e  conventional segmented-radiator 
concept i n  which each r ad ia to r  i s  attached t o  a part of the  condenser. 
I n  the  upper l e f t  of t h e  f igure  i s  the  shared-fin concept i n  which each 
tube i s  connected t o  a d i f f e ren t  header t o  form t h e  independent c i r cu i t s .  

Calculations have been made by M. Colaluca t o  determine t h e  r ad ia t ing  
effectiveness of a shared-fin r ad ia to r  when one of t he  tube c i r c u i t s  i s  
punctured. The r e s u l t s  are shown i n  the f igure .  The dashed curve 
represents  the var ia t ion  i n  r ad ia t ing  e f fec t iveness  with t h e  number of 
independent c i r c u i t s  f o r  t he  separated r ad ia to r  configuration shown on 
the  r igh t .  The so l id  curve represents  r e s u l t s  f o r  a comparable shared- 
f i n  rad ia tor  as a function of the number of c i r c u i t s .  
depending on the spec i f ic  fin-tube geometry and materials used, t h e  

I n  general, 
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r ad ia t ing  effect iveness  f o r  t he  shared-fin concept with one c i r c u i t  punc- 
tured would be from 5 t o  10 percent greater than t h a t  of the separated 
rad ia tor  configuration f o r  three t o  six c i r cu i t s .  
f i n  geometry and a shared-fin or segmented-overall configuration, the 
rad ia tor  w i l l  progressively degrade i n  thermal effect iveness  as meteoroid 
punctures are incurred i n  t h e .  Thus, the space vehicle w i l l  be faced 
w i t h  a power loss  problem. 
case of a manned vehicle,  there s t i l l  e x i s t s  the p o s s i b i l i t y  of manual 
repa i r  of the punctured rad ia tor  c i rcu i t .  After the holes i n  the defunct 
c i r c u i t  are welded, the repaired radiator  c i r c u i t  can then be react ivated 
and the power increment restored. 
developnent problems are expected t o  be associated with the  vapor-chamber- 
f i n  construction and operation. 

With a vapor-chamber- 

If the power l o s s  becomes t o o  severe, i n  the 

With this  concept, the pr inc ipa l  

The use of segmented rad ia tors  requires that severa l  l i qu id  rad ia tors  
and c i rcu la t ing  pumps be u t i l i z e d  i n  conjunction with a convectively 
cooled condenser. This implies an addi t ional  weight penalty and power 
dra in  because of the addi t iona l  c i rcu la t ing  pumps and their drives. 
would be desirable,  therefore ,  t o  s t i l l  maintain a redundancy concept 
f o r  t h e  rad ia tor ,  which would not involve the  need f o r  c i rcu la t ing  
pumps. A possible scheme that does t h i s  i s  the use of vapor-chamber f i n s  
t o  cool the vapor condenser d i rec t ly .  
i s  shown schematically i n  figure 13. 
i n  the form of an annulus w i t h  t he  f lu id  flowing i n  the longi tudinal  
segments of the annular passages. The outer  surface of the condenser is 
covered i n  a spl ine fashion by tapered vapor-chamber f in s .  
are segmented along the length i n  order t o  reduce the  degradation e f f ec t  
of the  impact of an  individual  chamber. 
ordinary cap i l l a ry  vapor-chamber f i n  operation i s  indicated by the sketch 
on t h e  r i g h t  of the  f igure.  
denser because of the complete coverage of t h e  condenser outer surface 
by the tapered vapor f i n s .  For t h i s  arrangement, t he  net  r ad ia t ion  i s  
approximately that  of the circumscribed cylinder s o  that, i n  general, 
it w i l l  not be more compact and w i l l  consume more i n t e r n a l  volume than a 
corresponding cy l ind r i ca l  radiator .  However, i f  feasible it can eliminate 
the need f o r  t he  c i rcu la t ing  pumps. 

It 

One form of such a conf igwat ton  
I n  th i s  f igure ,  the condenser is 

These f i n s  

I n  t h i s  configuration, the 

Armor protection i s  eliminated on the con- 

CONCLUDING REMclRKS 

On the basis of the  rad ia tor  studies discussed herein,  it appears 
t ha t  t he re  i s  no one bes t  configuration or recommended approach t o  the 
r a d i a t o r  problem f o r  high-power-level systems. 
spec i f ic  weight the greater  the  developnent problems and vice versa. 
Select ion appears t o  be primarily a matter of system requirements and 
associated trade-offs.  
the  use of conventional materials and bum@er geometries, although a t  the 
expense of a d d i t i o n a l  weight. However, i f  the  designer i s  more adventurous, 
he might consider using vapor f ins .  

I n  general, the lower the 

A path of l ea s t  res i s tance  can be obtained with 

In t h i s  case, a basic  r ad ia to r  
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configuration could consis t  of a monometallic vapor-chamber f i n  geoEetry 
u t i l i z i n g  the bumper-protection pr inciple  with e i t h e r  stainless-steel or 
titanium-alloy tubes and f i n s .  As  indicated previously, a copper-core 
clad f i n  i s  desirable t o  reduce the  degradation of rad ia t ing  effect iveness  
when individual vapor chamber f i n s  are punctured. It i s  a l s o  believed 
that some form of shared f i n  or segmenting will be necessary with a 
liquid-flow rad ia tor  i n  order t o  reduce the  possible catastrophic r e s u l t s  
of an unexpected meteoroid penetration. 
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